IVE(TY) Department of Engineering E&T2520 Electrical Machines 1 Miscellaneous Exercises

TRANSFORMER

Q1 A 20-kVA, 2000/200V, 50Hz single-phase transformer gives the following test results :

Open Circuit Test (HV side open)	200 V	4 A	125 W
Short Circuit Test (LV side short circuited)	60 V	10 A	280 W

- i) Derive and draw the approximate equivalent circuit referring to the LV side.
- ii) Determine the efficiency of the transformer at full load, 0.8 p.f. lagging.

Q2

A 1.1 kVA, 220/440V, 50Hz, single-phase transformer has the following test results:

	Voltage	Current	Power	Measure at
Open Circuit Test	220V	1.0A	100W	low volt side
(high volt side open)				
Short Circuit Test	60V	3A	162W	high volt side
(low volt side shorted)				

- (a) Find the transformer parameters, $R_{eq(low)}$, $X_{eq(low)}$, R_c and X_m referred to the <u>low volt side</u>.
- (b) Find the input voltage in phasor at low voltage side when the output voltage is kept at 400V, full load 0.8 power factor lagging.
- (c) Find the total losses of the transformer when it is operated at full load 0.8 power factor lagging.
- (d) Find the full load efficiency of the transformer when it is operated at full load 0.8 power factor lagging.
- (e) Find maximum efficiency of the transformer operated at 0.8 power factor.
- Q3 A single phase, 25 kVA, 220/440 V, 60 Hz transformer gave the following test results. Open circuit test (440 V side open): 220 V 9.5 A 650 W Short-circuit test (220 V side shorted): 37.5 V 55 A 950 W

(a) Derive the approximate equivalent circuit in per-unit values.

- (b) Determine the voltage regulation at full load, 0.8 PF lagging and draw the phasor diagram.
- Q4. A 10kVA, 200/400V 50Hz, single-phase transformer has the following equivalent circuit parameters.

Equivalent Resistance for core loss refer to 200V side	$R_{c1}=320\Omega$	
Magnetizing Reactance refer to 200V side	$X_{m1}=165\Omega$	
Primary winding (200V side) resistance and reactance	$R_1 = 0.03\Omega$,	$X_1 = 0.15\Omega$
Secondary winding (400V side) resistance and reactance	$R_2 = 0.12 \Omega$,	$X_2 = 0.25\Omega$

Calculate the equivalent circuit parameters refer to 400V side. Find the percentage voltage regulation and efficiency when supplying full load at rated voltage 400V and 0.8 p.f. leading.

DC MACHINES

- Q5 A 100kW, shunt excited dc generator has a field resistance of 200Ω . When the generator is delivering a rated output power, the terminal voltage is 500V and the generated emf is 525V. Find
 - (i) The armature resistance
 - Calculate, when the terminal voltage is set to 520V,
 - (ii) The generated emf if the output is reduced to 60% of rated output
- **Q6** A 100V DC supply is connected to a DC shunt motor ($Ra = 0.1\Omega$ with a rated current of 120A). At no load, the armature takes 6 amperes and runs at 1000rpm. Find:
 - i) the no-load loss,
 - ii) the full load speed if armature reaction is negligible,
 - iii) the corresponding torque for (ii),
 - iv) the full load speed if the armature reaction reduces 5% of the shunt field flux, and
 - v) the corresponding torque for (iv).
- Q7 The magnetization characteristic of a separately excited DC generator at 1200rpm is found to be $E_a = 5 + 110 I_f$, where $E_a = armature voltage (V)$ and $I_f = field current (A)$.

 I_f is adjusted to 1A and a 2 Ω load is connected to the armature. Given the armature resistance (Ra) = 0.2 Ω and the armature reaction effect can be ignored, find:

- i) the quantity of K_a ,
- ii) the armature current,
- iii) the torque, and
- iv) the power taken by the load.
- Q8B A dc machine is connected across a 240-volt line. It rotates at 1200 rpm and is generating 230 volts. The armature current is 40A.
 - (a) Is the machine functioning as a generator or as a motor?
 - (b) Determine the resistance of the armature circuit.
 - (c) Determine power loss in the armature circuit resistance and the electromagnetic power.
 - (d) Determine the electromagnetic torque in newton-meters.
 - (e) If the load is thrown off, what will the generated voltage and the rpm of the machine be, assuming (i) No armature reaction. (ii) 10% reduction of flux due to armature reaction at 40 amps armature current.

Q8D. A dc shunt machine (23 kW, 230V, 1500 rpm) has $R_a = 0.1 \Omega$.

- (i). The dc machine is connected to a 230 V supply. It runs at 1500 rpm at no-load and 1480 rpm at full-load armature current.
 - (a) Determine the generated voltage at full load.
 - (b) Determine the percentage reduction of flux in the machine due to armature reaction at full-load condition.
- (ii). The dc machine now operates as a separately excited generator and the field current is kept the same as in part 1. It delivers full load at rated voltage.
 - (a) Determine the generated voltage at full load.
 - (b) Determine the speed at which the machine is driven.
 - (c) Determine the terminal voltage if the load is thrown off.

INDUCTION MACHINES

- Q9 A 3-phase, 11.19kW, 380V, four-pole, 50Hz, 1440rpm induction motor delivers full output power to a load connected to its shaft. The windage friction loss of the motor is 700W.
 - (i) Determine the mechanical power.
 - (ii) Determine the air-gap power.
 - (iii) Determine the rotor copper loss.

The frequency of the emf induced in the rotor of a 3-phase, 6-pole, induction motor is found to have 180 cycles/min. The motor is connected to a 50Hz, 440V supply, calculate:

- (i) The speed of the motor
- (ii) The percentage slip of the motor
- **Q10** A 100kW, 3-phase, 380V, 50Hz, 4-pole, star-connected induction motor has the following test results:

	Voltage	Current	Power	Frequency
No Load Test	380V	40A	2000W	50 Hz
Lock Rotor Test	60V	120A	6000W	50 Hz

The stator resistance is 0.05Ω /phase.

The motor is delivering full load output and connected up to a 380V supply. Use the approximate equivalent circuit.

- (i) Find the R_c and X_m of the magnetising branch elements.
- (ii) Find the R_2 ' and X_{eq} of the equivalent circuit of the motor.
- (iii) Find the full load current if the full load power factor and efficiency of the motor are both 0.8.
- (iv) Find the full load slip if the mechanical loss is negligible.
- Q11. The power supplied to a three-phase induction motor is 40 kW and the corresponding stator losses are 1.5 kW. Calculate (i) the total mechanical power developed and rotor I² R loss when the slip is 0.04 per unit (ii) the output kW of the motor and (iii) the efficiency of the motor, if the friction and windage losses are 0.8 kW. Neglect rotor iron and copper losses.
- Q12 Assuming that the mechanical loss of the motor is negligible, and the DC resistance between any two stator terminals is 0.1Ω, the testing results on a 3-phase, 75kW, 380V, 50Hz, 4-pole, star-connected squirrel cage induction motor is summarized as follows.

No Load Test	380V	2067W	29A
Lock Rotor Test	188V	3240W	104A

- i) Derive an approximate equivalent circuit per phase for the induction motor.
- ii) Determine the input current and gross torque at 1455rpm.

SYNCHRONOUS MACHINES

- Q13 c) A star connected 3-phase, 1000kVA, 10kV, 1500rpm synchronous generator has a resistance of 1.5Ω and a synchronous reactance of $j15\Omega$ per phase. The field current is adjusted to give the rated terminal voltage at open circuit. If the field current is kept unchanged, find the stator current when the machine terminals are short circuited.
 - d) The synchronous machine in (c) is now connected to an infinite bus. The generator is adjusted to give rated current at 0.8 power factor lagging, find :
 - i) the excitation voltage, Ef, and
 - ii) the percentage increase in the field current relative to the previous field current.
- Q14 A 3-phase star-connected synchronous motor has the following name-plate data:

Speed	1500r.p.m.	PF	1	
Voltage	6.6kV	Current	920A	
Frequency	50Hz	Rating	10MW	
Excitation:				
Voltage	100V	Current	5.5A	

If the machine is operated at rated (full load) condition, find:

- i) the number of poles,
- ii) the output torque,
- iii) the efficiency,
- iv) the rotational loss (assume no winding resistance loss), and
- v) the power loss in field circuit.
- Q15. (a) When a 50 kVA, 3-phase,440-V, 60 Hz, star connected synchronous generator is driven at its rated speed, it is found that the open-circuit terminal voltage is 440 V line-to-line with a field current of 7 A. When the stator terminals are short circuited, rated current is produced by a field current of 5.5 A. Determine the synchronous reactance per phase.
 - (b) If the synchronous in (a) is used to supply an independent load of 40 kW with 0.85 lagging power factor at a potential of 440 V,
 - (i) Determine the field current required; and
 - (ii) if the load is reduced to 20 kW at 0.75 lagging power factor, to what value will the field current have to be reduced to maintain rated load potential?
- Q16. The 3 phase synchronous motor of 10 MVA, 14kV, star-connected, $R_s=0.07$ ohm/phase and $X_s=16.5$ ohm.phase is connected to a 3 phase, 14 kV, 60 Hz infinite bus and draws 5 MW at 0.85 leading power factor. Determine the values of the stator current (I_a), the excitation voltage (E_f), and the field current (I_f). Draw the phasor diagram. (Ans. Q6 $I_a=242.6A$, $E_f=10.73$ kV, $I_f=265$ A)

	TRANSFORMERS (SOLUTIONS)
01	Open Circuit Test
x -	LV side input voltage, $V = 200V$, LV side input current, $I = 4A$, LV side input power, $P_{oc} = 125W$
	$P_{oc} = \frac{V^2}{R_{c2}} \Rightarrow R_{c2} = 320$ (LV Side) $I_m = \sqrt{I^2 - (\frac{V}{R_{c2}})^2} \Rightarrow X_{m2} = \frac{V}{I_m} = 50.6$ (LV side)
	Short Circuit Test
	HV side input voltage = $60V$,
	HV side input current = $10A$,
	HV side input power = $P_{oc} = 280W$
	$P_{sc} = I^2 R_e \Rightarrow R_e = 2.8\Omega \text{ (HV side)} X_e = \sqrt{\left(\frac{V}{I}\right)^2 - R_e^2} \Rightarrow X_e = 5.3\Omega \text{ (HV side)}$
	$R_{e2} = R_e \left(\frac{V_2}{V_1}\right)^2 = 0.028\Omega, X_{e2} = X_e \left(\frac{V_2}{V_1}\right)^2 = 0.053\Omega$
	$\xrightarrow{R_{e2}} X_{e2}$
	$V = \begin{bmatrix} R_{c2} & J \\ R_{m2} & V_2 \end{bmatrix}$
	Evaluation $201-304 \times 0.9 = 161-300$ the full load officiency is
	Full load output power = 20 kVA × $0.8 = 16$ kw, the full load efficiency is
	$\eta = \frac{0}{100\%} \times 100\%, \eta = \frac{10\%}{100\%} \times 100\% = 97.53\%$
	Output power + Iron loss + Copper loss $16k + 125 + 280$
Q4.	$X_{M2} = X_{M1} \left(\frac{V_2}{V_1}\right)^2 = \underline{660\Omega}, \qquad \qquad R_{C2} = R_{C1} \left(\frac{V_2}{V_1}\right)^2 = \underline{1280\Omega}$
	$X_{e2} = X_2 + X_1 \left(\frac{V_2}{V_1}\right)^2 = \underline{0.85\Omega} R_{e2} = R_2 + R_1 \left(\frac{V_2}{V_1}\right)^2 = \underline{0.24\Omega}$
	$V_{BASE1}=200V$ $V_{BASE2}=400V$ $I_{BASE1}=50A$ $I_{BASE2}=25A$
	$S_{BASE1} = 10kVA$ $S_{BASE2} = 10kVA$
	$Z_{BASE1} = (V_{BASE1})^2 / S_{BASE1} = 4\Omega Z_{BASE2} = (V_{BASE2})^2 / S_{BASE2} = 16\Omega$
	$X_e (pu) = X_{e2}/Z_{BASE2} = 0.053$ $R_e (pu) = R_{e2}/Z_{BASE2} = 0.015$
	X_{M} (pu)= X_{M2}/Z_{BASE2} =41.25 R_{C} (pu)= R_{C2}/Z_{BASE2} =80
	$\uparrow \square R_{e2} X_{e2} \uparrow$
	$E_2 \mid \mid R_{c2} \downarrow X_{m2} \qquad V_2 \mid$
	$V_{NL} = V + I_2 Z_e = V \angle 0 + (R_{e2} + jX_{e2}) x I \angle (\cos^{-1}(p.f.)) \Rightarrow V_{NL} = 0.98 \text{ (pu)}$
	$VR = \frac{V_{NL} - V_2}{V_2} \times 100\% = \underline{-2\%}$
	$P_e=Core \ Loss = V_2^2 / R_{c2}=125W$, $P_{cu}=Copper \ Loss = I_2^2 R_{e2}=150W$
	P_{out} =Output Power=V_2I_2 cos = 8000W Efficiency = $\frac{P_{out}}{100}$ × 100 = 96.6%
	$P_{out} + P_e + P_{cu}$

TRANSFORMERS (SOLUTIONS)

Q2.	B1. (a) O/C Test : 100 = 220 (1) x p.f. cost = 0.45 45
	$R_c = \frac{220}{100} = 484 \Omega_0$ $sin\phi = 0.8907$
	1×0.4545 $\chi_m = 220$ $\chi_7 = 2470$
	$\frac{1}{1 \times 0.8907} = 247321$
	$3/C$ lest $Re = \frac{102}{3^2} = 18sc (refer to HV side)$
	$fe = \frac{60}{3} = 20 \Omega (Hefer to HV side)$: $Xe = \sqrt{Ze^2 - Re^2}$
	Xe = j 8.718
	(19 to Low voltage side
	$(18 + 38.718) \times (\frac{3}{4})^{2} = 4.5 + 2.179j$
	(b). $V_{in} = 220/0^{\circ} + f/-36.87^{\circ}[4.5+j2.179f] + 1=5/-36.7^{\circ}$
	= 244.58 <u>/-1.12</u> ° V. V_{in} j_{247} j_{3484} $j_{220/0}$ °
	(c) Full Load come fore - 100ml T
	Full Load copper Loss = t ² x 4:t = 100 (440 = 2.5 A (HV))
	Total = 100 + 1125 = 212.5W $\frac{1100}{220} = fA(Lv)$
	$(d) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
	(e) $\gamma \max 100 = \lambda^2 112.5 \Rightarrow \lambda = 0.9428 = I$
	$\eta \max = \frac{0.9428 \times 1100 \times 0.8}{0.9428 \times 1100 \times 0.8 + 200} \xrightarrow{\text{Insted}} 80.576\%$

TRANSFORMERS (SOLUTIONS)
Q3 (10)
Q3 (10)
Q3 (10)
Q3 (10)
Q3 (10)
Q5 (2.5) OC. Test. 220 V 9.4A 6.10W 440 Side open
SC. Test. 37.4V JTA 970W 220 Side Shorted
(a) From oc. Test.
$$\frac{y^2}{R_c} = P \Rightarrow \frac{220^2}{R_c} = 6dv \Rightarrow Re = 74.46$$
.
The scale of the state of

	DC MACHINES (SOLUTIONS)
Q5	$(I) P_{out} = (00 kw)$
	I a lookul
	$I = \frac{100 \text{KW}}{500 \text{V}} = 200 \text{A}$ $500 \text{V} = \frac{3200 \text{R}}{500 \text{V}} \text{T} = 525$
	$I_{f} = 500 - 3 F_{f}$
	200 = 2.5 A
	Ia = 200 + 2.5 = 202.5A
	$525 = 500 + 202.5 Ra \Rightarrow Ra = 0.12354$
	$P_{out} = 60 kW$ $V = \pm 20 v$
	Ra = 0.123
	I = 60kW (1+ 200 1 + 20
	520V = 113.38A 4 = 320 = 2.6A
	$I_a = I + I_f = 117.98 A$
	E = 520 + 117.98(0.123) = f34 + ty
06	$F_{2} = V_{2} - Ia Ra = 100 - 6 \times 0.1 = 99 4V$
200	$D_a = V_1 + M + M = 100^{-10} + 0.1 = 55.1 V$ No load loss = Ea x Ia = 99.4 x 6 = 596.4W
	At full load,
	Ea (fl) = $V_t - IaRa = 100 - 120 \times 0.1 = 88V$
	$\frac{E_a(fl)}{E_a(fl)} = \frac{K_a \phi_{fl} \omega_{fl}}{K_a \phi_{fl}} = \frac{\omega_{fl}}{M_{fl}}$ Therefore $\frac{88}{K_a} = \frac{N_{fl}}{M_{fl}} \rightarrow N_a = 885.31$ rpm
	$E_a(nl) = K_a \phi_{nl} \omega_{nl} = \omega_{nl} \qquad \text{finite correct}, 99.4 = 1000 \implies \text{figure correct}, 1000 \implies figure c$
	$T = \frac{E_a I_a}{88 \times 120} = \frac{88 \times 120}{113.9 \text{ Nm}}$
	$\omega \qquad 2\pi \times \frac{885.31}{60}$
	$E_a(fl) K_a \phi_{fl} \omega_{fl} \phi_{fl} \omega_{fl}$
	$\frac{1}{E_a(nl)} = \frac{1}{K_a \phi_{nl} \omega_{nl}} = \frac{1}{\phi_{nl} \omega_{nl}} \text{Therefore,} \frac{1}{99.4} = \frac{1}{1000} \implies N_{\text{fl}} = 931.9 \text{ rpm}$
	$T = \frac{E_a I_a}{1000000000000000000000000000000000000$
	$\omega = 2\pi \times \frac{951.9}{60}$
Q7	Ea = 5 + 110(1) = 115V
	Wm = $1200 \ge 2\pi / 60 = 125.71 \text{ rad/s}.$
	$Ka\Phi = Ea/Wm = 115/125.71 = 0.915Vs/rad$
	$Ia = Ea / (Ra + R_L) = 115 / (0.2 + 2) = 52.27A$
	$T = Ka\Phi Ia = 0.915 \text{ x } 52.27 = 47.83 \text{ Nm}$
	$P = I_L^2 R_L = 52.27^2 x \ 2 = 5464.3 W$

Q8B DC MACHINES (SOLUTIONS)

$$(4.23) (8)$$

$$V_{t} = 240 \quad 1200 \text{ rpm} \quad 230 \quad I_{a} = 40$$

$$Terminal \quad voltage = 240 \Rightarrow \text{ generated voltage} = 230$$

$$The de machine is operated as MotoR$$

$$(b) \quad Ra = \frac{240-230}{40} = \frac{V_{t} \cdot E_{a}}{Ia} = 0.250$$

$$(c) \quad Armature \quad Resistance \quad Loss = Ia^{2} Ra = 40^{2} \times 0.2t = 400W$$

$$(c) \quad Armature \quad Resistance \quad Loss = Ia^{2} Ra = 40^{2} \times 0.2t = 400W$$

$$(d) \quad Wm = \frac{1200}{60} 2TI = 125.7 \text{ rad } s^{-1}$$

$$T = \frac{9200}{125.7} = 73.19 \text{ Nm}$$

$$(e)(c) \quad Load thrown off \quad Ia = 0 \Rightarrow T = 0$$

$$Ea = Vt = 240$$

$$240 = K \phi_{n1} \qquad \therefore \text{ Giren } 230 = K \phi_{p1} 200$$

$$Assume \quad \phi_{n1} = \phi_{FL} \quad NO \quad Armature \quad raction$$

$$\Rightarrow \quad \frac{240}{230} = \frac{n}{1200} \Rightarrow n = 1252.2 \text{ rpm}$$

$$(II) \quad If we \quad assume \quad \phi_{nL} = 0.9 = 0$$

$$(II) \quad If we \quad assume \quad \phi_{nL} = 0.9 = 0$$

INDUCTION MACHINES (SOLUTIONS)

Q10 INDUCTION MACHINES (SOLUTIONS)

$$\begin{array}{c} \hline C_{2} \quad (3) \text{ No-load Test} \quad 2400 = \sqrt{3} \quad 380 \quad 40 \quad \cos\phi \\ & \cos\phi = \cos(\theta \quad S_{-}(57^{\circ}) \\ & I_{0} = J_{0} \quad -\frac{g_{1}+g_{2}+g_{2}}{2} \\ & \frac{2400}{\sqrt{3}} / I_{0} \sin\phi = k_{0} = 72 \cdot 8 \cdot 2 \quad y^{*} \\ & \frac{2400}{\sqrt{3}} / I_{0} \sin\phi = \chi_{m} = \frac{1}{3} \cdot \frac{1}{3} \\ \hline (\pi) \int \operatorname{lock} \operatorname{Rotor'} \operatorname{Test} \cdot \cdot & 6000 = \sqrt{3} (120)^{3} \operatorname{Re} \Rightarrow \operatorname{Re} = 0 \cdot 1389 \\ & \operatorname{Re}^{'} = 0 \cdot 1389 - 0 \cdot 01 \\ & \frac{900}{\sqrt{3}} = 0 \cdot 2886 \quad \vdots \quad \chi_{e} = \sqrt{0} \cdot 2886^{-1} - 0 \cdot 1389^{-1} = 0 \cdot 233 \\ \hline (\pi) \quad P_{0} \operatorname{test} = 100 \, \mathrm{kW} \quad \vdots \quad P_{0} \operatorname{test} / P_{0} \times 100 \quad 5 = efficiency = 80^{\circ}_{0} \\ & \frac{100}{0 \cdot 8} = \frac{1}{6} \operatorname{ris} = \sqrt{5} \quad 380 \quad I_{1} \quad 0 \cdot 8 \Rightarrow 1_{1} = 237 \cdot 4 \\ & I_{1} = 1 \text{ uput current to motor} \qquad I_{1} \quad \frac{1}{\sqrt{3}} \operatorname{Re}^{'}_{1} + \frac{1}{\sqrt{3}} \operatorname{Re}^{'}_{1}$$

Q14 SYNCHRONOUS MACHINES (SOLUTIONS)
1 SOU = 2x30x60/P, P = 4
T = 10000000/(1500x2π/60) = 63.636.36 Nm.
Pin = 6600 x 31⁻ x 20 x 1 = 10.517 kW.
Power loss in field = 100 x 5.5 = 550W
Q15
$$\therefore$$
 Field current = 7A \Rightarrow open circuit voltage = $\frac{440}{\sqrt{3}}$
Field current = 7A \Rightarrow short circuit current = $\frac{50 \times 10^3}{\sqrt{3} + 40}$
 \therefore Field current = 7A \Rightarrow short circuit current = $\frac{7}{55} \times \frac{10 \times 10^3}{\sqrt{3} + 40}$ = 83.5 A
Synchronous impedance = $\frac{440/3}{83 \cdot 5}$ = 3.04 ∞ /phase = χ_5 : $Razo$
 \therefore Load power = 40 kW 0.85 p.f lagging
 \therefore dire current = $I \implies \Rightarrow (5440 \ I \ 0.85 = 40 \times 1000$
 $I = 61.75 A$
 $\int \frac{140}{\sqrt{3}} 0^{\circ} \quad E_F = \frac{440}{\sqrt{3}} 10^{\circ} + (1.75 / -cus b Bt 3.04j)$
 $= \frac{440}{\sqrt{3}} + (12.5 - 32.7j) 3.04j = 353.4 + j 160$
 $|E_F| = 388 (per phase)$
 $\sqrt{3} 388 = 671.9 (line - to -line)$
Assume field current $\alpha E_F \qquad I_F = \frac{671.9}{440}$
 $P = 5x10^6 = \sqrt{3} 14 \times 10^3 \times 11x 0.85$
 $I = 242.6 (+31.8^{\circ})$
 $E_F = 14 \times 10^3 - 242.5 (+31.8^{\circ}) (0.07 + j 16.5)$
 $E_F = V - IZS$
 $= 10.73 \times 10^3 (-18.5)^{\circ}$
 $I = 0.73 \times 10^3 (-18.5)^{\circ}$
 $I = 0.73 \times 10^3 (-18.5)^{\circ}$