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Electrical Machines
• An electromechanical converter which is used 

to continuously translate electrical input to 
mechanical output, or vice versa.

• The process of translation is known as 
Electromechanical Energy Conversion.
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• The electromechanical energy conversion is from 
mechanical to electrical
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Electromagnetic Conversion  
(P.121 – P.123)

1 When a conductor moves in a magnetic field, 
voltage is induced in the conductor

e=Blv

2. When a current-carrying conductor is placed in 
a magnetic field, the conductor experiences a 
mechanical force.

F=BlI
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Basic Structure of 
Electrical Machines  (P.123 - P.125)

Stator

• This part of the machine does not move and 
normally is the outer frame of the machine.

Rotor

• This part of the machine is free to move and 
normally is the inner part of the machine.
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DC Machines

DC machines are versatile and extensively used 
in industry. A wide variety of volt-ampere or 
torque-speed characteristics can be obtained 
from various connections of the field windings.
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DC Machine Construction (sect.4.2.1)

• shunt field winding
• series field winding

Stator has salient poles that are excited by one or two 
field windings:
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DC Machine Construction  (cont)

• Armature winding is placed on the rotor

• Voltage induced in armature winding is alternating  
(Fig.4.12)
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DC Machine Construction  (cont)

• Commutator-brush combination is used as a 
mechanical rectifier to make the armature terminal 
voltage unidirectional and also to make the mmf 
wave due to armature current fixed in space
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Voltage Rectification by 
Commutators (sect. 4.2.2)
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Multi-turn Machine

In an actual machine a large number of turns are 
placed in several slots around the periphery of the 
rotor to reduce the ripple.
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Close-up of Commutator (1/2)
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Close-up of Commutator (2/2)
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Armature Windings (Sect.4.2.3)

Terms:
• A turn consists of 2 conductors connected to one end 

by an end connector.

• A coil is formed by connecting several turns in series

• A winding is formed by connecting several coils in 
series

• See. Figure 4.15
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Turn, Coil and Winding
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Lap Winding (Fig. 4.17)
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Lap Winding (Fig. 4.17)

• The 2 ends of a coil are connected to adjacent 
commutator segments.

• The number of brushes is equals to the number of 
poles. 

• The number of parallel paths is equals to the number 
of poles.

• Each path takes 1/p times the load current 
(p = no. of poles)
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Lap Winding (Fig. 4.17)
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Wave Winding (Fig. 4.18)
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Wave Winding (Fig. 4.18)

• The 2 ends of a coil are connected to commutator
segments which separated by twice the pole-pitch.

• Only 2 brushes are necessary, irrespective of the 
number of poles, but 4 or more may be used.

• The number of parallel paths is always 2.

• Each path takes 1/2 of the load current.
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Wave Winding (Fig. 4.18)
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Example

A 6-pole armature is wound with 498 conductors. The 
flux and the speed are such that the average emf 
generated in each conductor is 2V. The current in each 
conductor is 120A. Find the total current and the 
generated emf of the armature if the winding is 
connected (a) wave, (b) lap. Also find the total power 
generated in each case.

240A, 498V; 720A, 166V; 119.5kW
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Armature Induced Voltage

Emf Equation
Let Φ = Total flux per pole in Webers

n = Speed of the armature in rev/sec                            

p = number of pairs of poles (pole-pair)

Z = Total number of conductors on armature

a = Number of parallel paths through armature

(wave winding, a = 2, lap winding, a = 2p)
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Emf Equation

Total number of poles = 2p

A particular conductor pass 2pn poles/sec

Time taken tp pass one pole = 1/2pn sec

Emf induced per conductor = dΦ/dt

= Φ/1/2pn

= 2pnΦ volts

On the armature, there are Z/a conductors in series

∴ Total induced emf, Ea = 2pnΦZ/a volts
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Armature Voltage (Sect. 4.2.4)

As the armature rotates in the magnetic field produced 
by the stator poles, voltage is induced in the armature 
winding:

Ea= KaΦωm  (Eq.4.9 P.138)

(where Ka=Np/πa or Ka=Zp/2πa)
N=No.of turns, and
p= No. of poles Ka

Ea= generated voltage (Generator)

Ea= back emf (Motor)
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Armature Voltage Ex 1

The wave wound armature of a 6-pole DC 
generator has 30 slots and in each slot there are 8 
conductors. The flux per pole is 0.0174Wb. 
Calculate the value of the emf generated when the 
speed of the armature is 1200 rev/min.

(Ans: 250.56V)
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Armature Voltage Ex 2

A lap wound DC generator is to have an output voltage 
of 500V at 26 rev/s. The armature has 28 slots each 
containing 12 conductors. Calculate the required value 
of flux per pole.

(Ans: 0.057Wb)



slide 30

Electrical Machines 1
IVE (TY)IVE (TY)
Department of EngineeringDepartment of Engineering

Magnetization Curve (Sect. 4.2.6)

• Flux-mmf relation (Fig. 4.22)

∝ Field Current
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Magnetization Curve (Fig.4.23)

Also known as:
• Saturation Curve
• Open-Circuit Characteristic

the magnitude of induced 
emf is depending on the 
rotor speed
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Armature Reaction (P.147 to P.150)

• With no current flowing in the armature, the flux in 
the machine is established by the mmf produced by 
the field current. 

• However, if the current flows in the armature circuit it 
produces its own mmf (hence flux) acting along the 
q-axis.

• Therefore, the original flux distribution in the machine 
due to the field current is disturbed.
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Armature Reaction

1. Evenly distributed flux due to Field Current alone



slide 35

Electrical Machines 1
IVE (TY)IVE (TY)
Department of EngineeringDepartment of Engineering

Armature Reaction

2. Flux Distribution due to Armature Current alone
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Armature Reaction

3. Overall Flux Distribution (M.N.A. Shifted)
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Effects of Armature Reaction

• Distort the air-gap flux pattern of the machine.
• In DC generator, the magnetic neutral axis is being 

shifted by some angle θ in the direction of rotation.
• The distorted flux density weakening one pole tip and 

strengthening the other.
• Uneven flux density distribution which will result in a 

reduction in the total flux (due to magnetic saturation).
• Due to the field is distorted, there is an emf between the 

commutator segments at the instant when both touch 
the same brush. This emf generates a brief, high current 
that causes excessive sparking and arcing as the 
commutator rotates
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Summary of AR

Leading
 Pole-tip

Trailing
Pole-tip

Magnetic
Neutral

Axis
Generator Weakened Strengthened Shifted

Forward
Motor Strengthened Weakened Shifed

Backward
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Commutation (Sect 4.3.5)

• Ideal commutation curve [Fig. 4.46(c)].

• 2 reasons for non-ideal commutation:

• Coil inductance

• Reactance voltage

• Causes sparking [Fig. 4.46(d)].
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Commutation Curve  (Fig.4.46c)

Ideal Actual
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Methods of Reducing Sparking
(Remedies for Armature Reaction)

• Use of high-resistance brushes

• Brush Shifting

• Interpoles

• Compensating Winding
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Interpoles (Sect 4.3.5)

• Commutation pole.

• Small poles which are situated between the 
main poles.

• Its winding carries the armature current in such 
a direction that its flux opposes the q-axis flux 
produced by the armature current flowing in 
the armature winding [see Fig. 4.46(e)].

• The net flux in the interpole region is almost 
zero.
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Interpoles (Sect 4.3.5)
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Compensating Winding (P.150 to P.151)

• Winding which is fitted in slots cut on the 
main pole faces.

• They are arranged that the mmf produced 
by currents flowing in these windings 
opposes the armature mmf [see Fig. 4.33(a)].

• Compensating winding is connected in 
series with the armature winding so that its 
mmf is proportional to the armature mmf [see 

Fig. 4.33(b)].
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Compensating Winding (Fig.4.33)


